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Abstract. To cope with many difficult problems that must be solved certainly for sustainable development goals,
practical approaches available for rational decision making is highly demanded in modern technologies. In such
situation, various optimization methods have been successfully applied so far. Particularly, under multiple goals
someone of which conflict with each other, a field known as multi-objective optimization problem (MOP) has been
studied from various aspects. Among them, multi-objective evolutionary algorithms (MOEASs) are especially
interested in these decades. They are viewed as a useful technique for revealing a wide relation of objective
function values among the conflicting objectives and supporting multi-objective optimization. To enhance its ability,
in this paper, we have proposed a simple procedure for solving single-objective optimization problems using MOEA
and the idea will be applied to some multi-objective optimization based on weighing and e-constrained
(lexicographic) approaches. Being classic, they are often used in various situations even presently due to the
effectiveness regardless of their simplicity. Moreover, a post-optimal evolution is proposed for repairing some
shortcomings inherent to those approaches and makes them more practical and adaptive. Actually, it is deployed in
co-operation with our elite-induced multi-objective evolutionary algorithms. In the numerical experiment, a set of
benchmark problems and the classical MOPs have been solved to examine the performance as global and practical
optimization technique, respectively. Eventually, the proposed idea makes MOEA more useful in various decision-
making environments encountered these days.
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1. INTRODUCTION aims at revealing a wide relation on objective function
values among the conflicting objectives and supporting
multi-objective optimization. To expand availability of

such MOEA, we first proposed (Yoo and Shimizu, 2018) a

To cope with many difficult problems that must be
solved certainly for sustainable development goals,

practical optimization methods are highly demanded for
supporting  rational  decision-making in  modern
technologies. In this sense, meta-heuristic optimization
methods opened a new horizon since they can work with
various situations flexibly and effectively. They never need
differential information of functions at all and go well with
meta-model or model of model. Noticing the amazing
progress of simulation technique as in software and
computer as in hardware, such feature is quite suitable for
practical optimization.

Moreover, the idea has successfully extended to the
area associated with multi-objective optimization problem
(MOP). Actually, multi-objective evolutionary algorithms
(MOEA) are especially interested in these decades (Coello,
2012). They are viewed as a multi-objective analysis that

simple procedure for solving single-objective optimization
problem (SOP) using MOEA and applied it to the real
world optimization problem incorporated with a multi-
objective optimization method known as MOON? (Shimizu
and Kawada, 2002).

After confirming its solution ability more in detail, in
this paper, we provide a portable technique that makes
everyone easily engage in multi-objective optimization. For
this purpose, we concern with certain scalarlized MOPs
given as weighed and e-constraint approaches. Being
classic, they are often used even presently due to the
effectiveness regardless of their simplicity. Then, a post-
optimal evolution is proposed to repair some shortcomings
inherent to those classic approaches. Actually, it is
deployed in co-operation with our elite-induced multi-



objective evolutionary algorithm (EI-MOEA). Finally, we
discuss on the effectiveness of the proposed idea through
solving a set of benchmark problems and then move on the
classic MOP and its post-optimal evolution.

The rest of this section is organized as follows.
Section 2 describes the proposed idea and its cool
application. In Section 3, the effectiveness is verified
through a few numerical experiments. Some conclusions
are given in Section 4.

2. PROPOSED
APPLICATION

IDEA WITH A COOL

2.1 Multi-objective Optimization in Terms of
Scalarlization

In general, MOP is described as follows.
®.1) Min f(x)={f,(x),..., f ()}

9;(x)<0, (i=1,...,m1)}

subjectto x e X =< x| )
h,(x)=0, (i=1,...,m2)

where x denotes a decision variable vector, X a feasible
region and f an objective function vector, some elements of
which conflict with one another.

The aim of this problem is to obtain a unique
preferentially  optimal  solution through  subjective
judgments of decision maker (DM) on his/her preference.
On the other hand, to reveal a certain tradeoff relation
among the conflicting objectives and to provide useful
information about the DM’s preference is called as multi-
objective analysis (MOA; Psarras, et al., 1990, Bennett,
1989, Sohpos, et al., 1980). Regardless of such
fundamental definition, multi-objective  evolutionary
algorithm (MOEA) as a method for MOA has been
developed under the name of “optimization”. However,
every MOEA is still useful for MOP since it can derive
Pareto front as the essence of tradeoff readily and
effectively.
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As a popular approach for MOP, some scalarlized
methods have been applied traditionally due to their
simplicity in application. They try to transform the original
MOP into SOP by a certain procedure. In the case of
weighting and & -constraint methods, this formulation is
given as (p.2) and (p.3), respectively.

(p.2) Mxin V(f(x))=ZN:wi f,(X) subjectto x € X

(p-3) Min V(f(x))=f,(x) subjectto
XxeX & fj <g; Vi #i

where w; denotes the weighting coefficient representing the
relative importance of the i-th objective and & the upper
bound compromise for j-th objective function. Generally
speaking, however, there exist no ways to appropriately
decide these preference parameters beforehand. That is an
inherent weakness that should be overcome by these
approaches.

2.2 Simple Formulation to Solve Scalarlized MOP by
MOEA

Here, we propose an idea to solve SOP by using
MOEA. That is very simple and deployed in terms of the
following proposition.

Proposition: Objectives Min V(f(x)) and Max V(f(x))
always conflict with each other.
This means problem “(p.4) Min {V(f(x)), - V(f(x))} s.t.
xeX” or “(p.4’) Min {V(f(x)), L/V(f(x))} s.t. xeX” is
viewed as a bi-objective problem. Accordingly, we can
solve any SOP by MOEA as follows.
(1) Apply a certain MOEA for the above (p.4) or (p.4°).
(2) Select the solution with the minimum value of V(f(x))

as the preferentially optimal solution of (p.1).

Thus, we can obtain the preferentially optimal solution of
the original problem by MOEA. In terms of such idea, we
can solve MOP after transforming it into the scalar one as
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Fig.1 Framework of the proposed idea compared with conventional stance of MOEA: Though the conventional application
is limited to just derive the Pareto front, the proposed procedure has practical and wide possibilities. What's more, all

we need is just an appropriate MOEA.



mentioned in the previous subsection. This seems to be a
cool application that can extend the availability of MOEA.

2.3 Post-optimal Evolution Using Elite-induced MOEA

It is possible to cope with the inherent weakness of
pre-determined value function or scalarlized approach
through a post-optimal evolution. For this purpose, our
elite-induced MOEA (EI-MOEA) (Shimizu, Takayama and
Ohishi, 2012) is just amenable. The principle behind this
idea is just simple and straightforward from the original
MOEA. Instead of using all randomly generated initial
solutions, it introduces some elite solutions that are
obtained from the prior solution and just apply an
appropriate MOEA. We can expect the existence of the
elite solutions will induce the Pareto front at the direction
toward their pre-existing locations. By adjusting the
number and location of such elites, it is possible to
manipulate a distribution of final solutions so that the result
would lie on a specific region on Pareto front. Moreover,
due to the existence of the elites, selection pressure that
might contribute to the accuracy and convergence speed is
always kept at high level. This makes the algorithm
powerful and computation load smaller.

Since the present aim is to obtain the preferentially
optimal solution, the distribution should be limited around
it. Hence, this attempt is realized by the following
formulation.

(.5) Min{f,(x),.., fy (x)} subject to

N *
XeX&Y (- f(x)) <5
i=1

where f;'denotes the i-th objective value of the optimal
solution of (p.2) or (p.3) and San upper bound extent of
post-optimal evolution (Shimizu et al., 2016).

As a summary of this subsection, in Fig.1, we show a
framework concerned by the proposed idea to make its
significance clear. Just by an appropriate MOEA, we can
cope with a variety of interests in engineering optimization
regardless whether it is given as SOP or MOP. Eventually,
the proposed idea is promising to expand and enhance the
availability of MOEA greatly.

3. NUMERICAL EXPERIMENTS
3.1 Evaluation with Various Benchmark Problems

Now, to evaluate the global solution ability through
comparison with other methods, we solved ten popular
benchmark problems some of which have multiple peaks of
objective functions (Refer to Appendix). We deployed our
approach taking NSGA-II (Deb et al., 2000) and compared
its performance to one conventional direct search N-M
(Nelder & Mead) and four popular evolutionary methods

such as DE (Differentially Evolution), PSO (Particle
Swarm Optimization), GA (Genetic Algorithm) and SA
(Simulated Annealing). Each problem was solved using the
algorithms in R with the respective default tuning
parameters (Library or code names are for NSGA-II: nsga2
in "mco"; DE: "DEoptim"; PSO: "pso"; GA: "rbga in
genalg"; SA and N-M: in "optim™). On the other hand, we
set the population size (popsz) and generation time (gener)
depending on the dimension of decision variables D as
Egs.(1) and (2), respectively. In terms of the known optimal
value fopt, we evaluated the success numbers by Eq, (3).

popsz = min( 10D, 60) Q)
gener = min(100*popsz®”’, 2000) (2)
Success# : if ( |fopt - f(x)| < eps*(1.0 + [fopt]) ),

then Success# = +1, where eps=1.0E-2 3)

Every problem was solved 31 times and we show only
a part of these results in Tables 1 and 2 due to the space
limitation. Under the present conditions, only DE could get
full mark all over the problems, and only two problems (De
Jong & Martin/ Gaddy ) are solved correctly by all methods.
To evaluate the performance among the methods quickly,
we ranked the method according to the Success# as shown
in Table 3.

Table 1 Comparison among the methods for 4-D
Rosenbrock (D=4, popsz=40, gener=1322, fopt=0)

Item Min Median Mean Max Suc#
DE 0.0 0.0 0.0 00| 31
PSO 1.08E-4 7.81E-4 9.02E-4 | 2.24E-3 31
GA 9.90E-3 6.02E-1 5.78E-1 1.2438 1
N-M 3.04E-7 1.48E-5 7.17E-1 3.7074 25
SA 6.86E-3 2.95E-2 2.99E-2 | 8.07E-2 2
NSGA?2 | 3.70E-3 6.59E-1 1.00236 3.8230 2

Table 2 Comparison among the methods for Griewangk
(D=10, popsz=60, gener=1756, fopt=0)

Item Min Median Mean Max Suc#
DE 0.0 0.0 0.0 0.0 31
PSO 0.0 0.0 9.58E-4 7.40E-3 31
GA 1.02E-6 7.40E-3 4.54E-3 7.40E-3 31
N-M 2.93E-3 3.37E-2 7.44E-2 3.67E-1 3
SA 6.59E-1 8.88E-1 8.74E-2 9.90E-1 0
NSGA2 | 1.00E-4 7.54E-3 1.08E-2 4.37E-2 26

Despite the poor performance of SA as of meta-
heuristic algorithm, conventional N-M has a favorable
feature if we notice its simple algorithm. Though the
proposed NSGA-II is inferior to DE and PSO, it
outperforms the rests including the relative method like GA.



Moreover, four poor results regarding NSGA-II are
analyzed more in detail. We showed their histogram
based on the objective value in Fig. 2. From all of those
results, the solution ability of the proposed approach is
known to be satisfactory except for 4d-Rosenbrock and
Griewangk problems.

Finally, we can conclude the total performance ranks
at the third place following DE and PSO a bit behind. From
these, we can claim the proposed NSGA-II is comparable
to the conventional evolutionary methods and sufficient
even as a global optimization method for SOP.

3.2 Post-optimal Evolution to Enhance Prior Solution
of Scalarlized MOP

Though the weighting and &-constraint methods
belong to classical method, they are often used due to the
effectiveness regardless of their simplicity as mentioned
already. Here, through the proposed NSGA-II, we solved
the bi-objective FES1 benchmark (Huband et al., 2006,

Appendix) formulated as SOP, i.e., (p.2) or (p.3). We
showed those results in the “Before” column in Table 4.

As popularly known, shortcomings of those classical
methods refers to the stiff setting of preference parameters
like weighting and & constraint values. Generally speaking,
it is almost impossible to pre-determine those values
appropriately. Hence, it makes sense to re-evaluate the
result after such plain optimization. For example, taking
three cases shown “Method” and “Preference parameter” in
Table 4, i.e., case & =0.1 weighs f, more than f; and case
& =0.7 oppositely more f; while case “Weighting”
balances both, we carried out this post-optimal evolution
following the procedure mentioned in Sec.2.3.

Using the elite-induced NSGA-II under the conditions
popsz=6, gener=200 and single elite (original optimal
solution) shown in “Before” column, we obtain the result
for each case as shown in “After” column. Among them, we
used bold face to show the best solution while underline
infeasible ones. By virtue of the post-optimal evolution, let
us note some solutions shown by red letters outperform the
original solution.

Table 3 Summary of ranking of each method (Number in brackets denotes the Success# defined by Eq.(3))

Problem 1st 2nd 3rd 4th 5th last
Shekel's fox hole | DE, NSGA2, GA [31] PSO [29] | N-M [2] SA [1]
Schwefel DE [31] PSO[27] | NSGA2[22] | GA [9] SA [3] N-M [2]
De Jong All solved successfully
Goldstein/Price DE, PSO, GA [31] NSGA2[30] | SA [28] N-M [16]
Branin DE,PSO,GA,N-M,SA [31] NSGA2[30]
Martin/ Gaddy All solved successfully
Rosenbrock DE, PSO, SA, N-M [31] NSGA2[23] | GA [16]
4-D Rosenbrock DE, PSO [31] N-M [25] | NSGA2 [2] | SA [2] GA [1]
Hyper sphere DE,PSO,NSGA2,GA N-M[31] SA [1]
Griewangk DE, PSO, GA [31] NSGA2[26] | N-M [3] SA [0]
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Fig.2 Histogram of success number for lower rank results regarding NSGA-II (Range means objective value).




Among those, we might find out more favorable
solution by elaborately inspecting those solutions again. In
fact, since the pre-determined & constraint values are not
strictly definite, it is meaningful to work on this re-
evaluation over the underlined infeasible solutions. For
example, as seen in the case of & =0.1, an infeasible
(2.5548, 0.1086) might be more preferable to the best
(2.7178, 0.0875) or the elite (2.6366, 0.1) since allowing a
slight violation of & constraint on f, (<0.1) can give a big
return on f;.

In a summary, in Fig.3, we describe the results of the
original optimizations (w12, e<0.1 & e<0.7) and the post-
optimal evolutions (post-w12, post<0.1 & post<0.7). (In
reference, we add the Pareto front derived by ordinal
NSGA-II under the conditions popsz=20, gener=100). We
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Fig.3 Post-optimal evolution for three optimal solutions
obtained by classical methods.

know every post-optimal evolution can build correctly its
corresponding segment of the Pareto front. Through

inspecting the front around there, we might improve the
quality of multi-objective optimization and have a chance
to update the prior decision rationally. Eventually, we can
relax the shortcomings of the classical methods and make
them more flexible and adaptive approach.

4. CONCLUSION

To make a rational decision in various fields, we have
successfully resolved some difficult problems not only
through SOP but also MOP. Especially, MOEAs are being
interested in these decades. Though they are useful
techniques for multi-objective analysis, in this paper, we
have proposed a simple procedure for solving SOP by
MOEA to enhance its usefulness. Moreover, the idea has
been applied to the classic multi-objective optimization
under the weighing and e-constraint approaches and
deployed as a post-optimal evolution that aims at repairing
shortcomings inherent to those methods. Actually, it is
developed in a co-operation with our elite-induced multi-
objective evolutionary algorithms. After all, the proposed
idea can make an analysis method like MOEA be available
for an effective and practical solution method of SOP and
certain MOPs as well.

To examine the effectiveness of the proposed idea, a
set of benchmark problems have been solved by the
proposed NSGA-1I and compared with other methods.
Then, through the post-optimal evolution for the classical
MOPs, we have shown its significance in practical
decision-making. In future studies, it is interesting to
compare the performance among the other MOEAs like
MODE, MOPSO, etc.

Table 4 Result of FES1 benchmark by the proposed procedure mentioned in Sec. 2.1

Method Preference Before (original) _ After (post-optimal) _
parameter (fy, f,) : elite \Y (fy, ) V

(1.8510, 0.2077) 0.5363 | (1.4875, 0.2089) 0.4646

(1.2923, 0.2749) 0.4784

Weighting w=(0.2,0.8)" (1.7935, 0.1795) 0.5023

(2.3434,0.1357) 0.5772

(2.3603, 0.1347) 0.5798

(2.2045, 0.1406) 2.2045

(2.4921, 0.1168) 24921

£=0.1 (2.5548, 0.1086) 2.5548

(weigh on fy) (2.6366, 0.1) 2.6366 | (2.7178,0.0875) 2.7178

(2.9363, 0.0738) 2.9363

g-constraint (3.0837, 0.0588) 3.0837

(0.5971, 0.7773) 0.5971

5207 (0.7454, 0.7163) 0.7454

(weigh on f,) (1.0531, 0.7) 1.0531 | (0.8292,0.5473) 0.8292

(0.9483, 0.4234) 0.9483

(1.1198, 0.3913) 1.1198
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Appendix. Benchmark Problems

1. Shekel's fox hole: fopt =0.998004 at (-32.0, -32.0)

25
i:o.oouz - 1 ; =50 < x; <50, Vj
f(x) =R TN G-

a; ={-32,-16,0,16,32,-32,-16,0,16, 32, - 32,
-16,0,16,32,-32,-16, 0,16, 32,-32,-16, 0,16, 32;
-32,-32,-32,-32,-32,-16,-16,-16, -16, - 16,
0,0,0,0,0,16,16,16,16,16, 32,32, 32, 32,32}

2. Schwefel: fopt =0.0 at (418.9829, ..., 418.9829)

6
f(x) ==Y sin({|x; [); ~500< x; <500, Vj
=

3. De Jong: fopt =3905.93 at (1, 1)

f (x) =3905.93+100(x; —X,)* +(1-%,)%; —2<X; <2, Vj

4. Goldstein & Price: fopt =3 at (0, -1)

f(X) =L+ (X + Xy +1)2 (19 —14x, + 3xZ —14x, + 6XX, +3x2)}
* £30 + (2%, — 3X,)? (18 — 32x, +12x2 + 48X, —36X,X, + 27x2)};
-2< Xj < 2,,vj

5. Branin: fopt =0.3977272 at (-22/7, 12.275), (22/7, 2.275)
or (66/7, 2.475)

f(x) =a(x, —bx{ +cx, —d)? +e(l— f)cos(x)+e; —5<x; <10, Vj
a=1,b=E(l)2,c:ﬁ,dzs,ezlo, fol
4 22 22 176

6. Martin & Gaddy: fopt =0 at (5, 5)

f(X) = (% —%,)* +{(x, +x, —10)/3}*; 0<x; <10,V]
7. Rosenbrock : fopt =0 at (1, 1)

f(x) =100(x{ —Xx,)* +(L—x)* —2<X; <2, Vj

8. 4-D Rosenbrock: fopt =0 at (1, 1, 1, 1)

3

f(x) =D {100(x7 = %;,,)* + (1— %)} —2<x; <2,Vj
i=l

9. Hyper sphere: fopt =0 at (0, 0, 0, 0, 0, 0)
6

f(x)=> x};-6<x; <6,V

it

10. Griewangk: fopt =0 at (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

10 X-Z 10 X.
f(x)=1+ L — 1 [cos(—%); -5<x; <5,V]j
2000 LI =5

FES1: Min{f,(x) :ZD] x —exp((i/ D)?)/3[°°,

f,(x) = ZD:(Xi —~0.5c0s(107/ D) - 0.5)2}, x. €[0]]

i=1
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