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Abstract. To cope with many difficult problems that must be solved certainly for sustainable development goals, 

practical approaches available for rational decision making is highly demanded in modern technologies. In such 

situation, various optimization methods have been successfully applied so far.  Particularly, under multiple goals 

someone of which conflict with each other, a field known as multi-objective optimization problem (MOP) has been 

studied from various aspects. Among them, multi-objective evolutionary algorithms (MOEAs) are especially 

interested in these decades.  They are viewed as a useful technique for revealing a wide relation of objective 

function values among the conflicting objectives and supporting multi-objective optimization. To enhance its ability, 

in this paper, we have proposed a simple procedure for solving single-objective optimization problems using MOEA 

and the idea will be applied to some multi-objective optimization based on weighing and -constrained 

(lexicographic) approaches. Being classic, they are often used in various situations even presently due to the 

effectiveness regardless of their simplicity. Moreover, a post-optimal evolution is proposed for repairing some 

shortcomings inherent to those approaches and makes them more practical and adaptive. Actually, it is deployed in 

co-operation with our elite-induced multi-objective evolutionary algorithms. In the numerical experiment, a set of 

benchmark problems and the classical MOPs have been solved to examine the performance as global and practical 

optimization technique, respectively. Eventually, the proposed idea makes MOEA more useful in various decision-

making environments encountered these days.    
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1. INTRODUCTION 
 

To cope with many difficult problems that must be 

solved certainly for sustainable development goals, 

practical optimization methods are highly demanded for 

supporting rational decision-making in modern 

technologies. In this sense, meta-heuristic optimization 

methods opened a new horizon since they can work with 

various situations flexibly and effectively. They never need 

differential information of functions at all and go well with 

meta-model or model of model. Noticing the amazing 

progress of simulation technique as in software and 

computer as in hardware, such feature is quite suitable for 

practical optimization.  

Moreover, the idea has successfully extended to the 

area associated with multi-objective optimization problem 

(MOP). Actually, multi-objective evolutionary algorithms 

(MOEA) are especially interested in these decades (Coello, 

2012).  They are viewed as a multi-objective analysis that 

aims at revealing a wide relation on objective function 

values among the conflicting objectives and supporting 

multi-objective optimization. To expand availability of 

such MOEA, we first proposed (Yoo and Shimizu, 2018) a 

simple procedure for solving single-objective optimization 

problem (SOP) using MOEA and applied it to the real 

world optimization problem incorporated with a multi-

objective optimization method known as MOON
2
 (Shimizu 

and Kawada, 2002).  

After confirming its solution ability more in detail, in 

this paper, we provide a portable technique that makes 

everyone easily engage in multi-objective optimization. For 

this purpose, we concern with certain scalarlized MOPs 

given as weighed and -constraint approaches. Being 

classic, they are often used even presently due to the 

effectiveness regardless of their simplicity. Then, a post-

optimal evolution is proposed to repair some shortcomings 

inherent to those classic approaches. Actually, it is 

deployed in co-operation with our elite-induced multi-



 

 

objective evolutionary algorithm (EI-MOEA). Finally, we 

discuss on the effectiveness of the proposed idea through 

solving a set of benchmark problems and then move on the 

classic MOP and its post-optimal evolution.  

The rest of this section is organized as follows. 

Section 2 describes the proposed idea and its cool 

application. In Section 3, the effectiveness is verified 

through a few numerical experiments. Some conclusions 

are given in Section 4. 

 

2. PROPOSED IDEA WITH A COOL 
APPLICATION 
 

2.1 Multi-objective Optimization in Terms of
Scalarlization 

 

In general, MOP is described as follows. 
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where x denotes a decision variable vector, X a feasible 

region and f an objective function vector, some elements of 

which conflict with one another.  

The aim of this problem is to obtain a unique 

preferentially optimal solution through subjective 

judgments of decision maker (DM) on his/her preference.  

On the other hand, to reveal a certain tradeoff relation 

among the conflicting objectives and to provide useful 

information about the DM’s preference is called as multi-

objective analysis (MOA; Psarras, et al., 1990, Bennett, 

1989, Sohpos, et al., 1980). Regardless of such 

fundamental definition, multi-objective evolutionary 

algorithm (MOEA) as a method for MOA has been 

developed under the name of “optimization”. However, 

every MOEA is still useful for MOP since it can derive 

Pareto front as the essence of tradeoff readily and 

effectively. 

As a popular approach for MOP, some scalarlized 

methods have been applied traditionally due to their 

simplicity in application. They try to transform the original 

MOP into SOP by a certain procedure. In the case of 

weighting and  -constraint methods, this formulation is 

given as (p.2) and (p.3), respectively.   
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where wi denotes the weighting coefficient representing the 

relative importance of the i-th objective and j the upper 

bound compromise for j-th objective function.  Generally 

speaking, however, there exist no ways to appropriately 

decide these preference parameters beforehand. That is an 

inherent weakness that should be overcome by these 

approaches.   

 

2.2 Simple Formulation to Solve Scalarlized MOP by

 MOEA 

 

 Here, we propose an idea to solve SOP by using 

MOEA. That is very simple and deployed in terms of the 

following proposition. 

Proposition: Objectives Min V(f(x)) and Max V(f(x)) 

always conflict with each other. 

This means problem “(p.4) Min {V(f(x)), - V(f(x))} s.t. 

x∊X” or “(p.4’) Min {V(f(x)), 1/V(f(x))} s.t. x∊X” is 

viewed as a bi-objective problem. Accordingly, we can 

solve any SOP by MOEA as follows.  

(1) Apply a certain MOEA for the above (p.4) or (p.4’).  

(2) Select the solution with the minimum value of V(f(x)) 

as the preferentially optimal solution of (p.1). 

Thus, we can obtain the preferentially optimal solution of 

the original problem by MOEA. In terms of such idea, we 

can solve MOP after transforming it into the scalar one as 

Fig.1 Framework of the proposed idea compared with conventional stance of MOEA: Though the conventional application 

is limited to just derive the Pareto front, the proposed procedure has practical and wide possibilities. What's more, all 

we need is just an appropriate MOEA. 

 



 

 

mentioned in the previous subsection. This seems to be a 

cool application that can extend the availability of MOEA. 

 

2.3 Post-optimal Evolution Using Elite-induced MOEA 

 

It is possible to cope with the inherent weakness of 

pre-determined value function or scalarlized approach 

through a post-optimal evolution. For this purpose, our 

elite-induced MOEA (EI-MOEA) (Shimizu, Takayama and 

Ohishi, 2012) is just amenable. The principle behind this 

idea is just simple and straightforward from the original 

MOEA. Instead of using all randomly generated initial 

solutions, it introduces some elite solutions that are 

obtained from the prior solution and just apply an 

appropriate MOEA. We can expect the existence of the 

elite solutions will induce the Pareto front at the direction 

toward their pre-existing locations. By adjusting the 

number and location of such elites, it is possible to 

manipulate a distribution of final solutions so that the result 

would lie on a specific region on Pareto front. Moreover, 

due to the existence of the elites, selection pressure that 

might contribute to the accuracy and convergence speed is 

always kept at high level. This makes the algorithm 

powerful and computation load smaller.  

Since the present aim is to obtain the preferentially 

optimal solution, the distribution should be limited around 

it. Hence, this attempt is realized by the following 

formulation.  
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where fi
*
denotes the i-th objective value of the optimal 

solution of (p.2) or (p.3) and an upper bound extent of 

post-optimal evolution (Shimizu et al., 2016). 

As a summary of this subsection, in Fig.1, we show a 

framework concerned by the proposed idea to make its 

significance clear. Just by an appropriate MOEA, we can 

cope with a variety of interests in engineering optimization 

regardless whether it is given as SOP or MOP. Eventually, 

the proposed idea is promising to expand and enhance the 

availability of MOEA greatly. 

      

3. NUMERICAL EXPERIMENTS  
 

3.1 Evaluation with Various Benchmark Problems 

 

Now, to evaluate the global solution ability through 

comparison with other methods, we solved ten popular 

benchmark problems some of which have multiple peaks of 

objective functions (Refer to Appendix). We deployed our 

approach taking NSGA-II (Deb et al., 2000) and compared 

its performance to one conventional direct search N-M 

(Nelder & Mead) and four popular evolutionary methods 

such as DE (Differentially Evolution), PSO (Particle 

Swarm Optimization), GA (Genetic Algorithm) and SA 

(Simulated Annealing). Each problem was solved using the 

algorithms in R with the respective default tuning 

parameters (Library or code names are for NSGA-II: nsga2 

in "mco"; DE: "DEoptim"; PSO: "pso"; GA: "rbga in 

genalg"; SA and N-M: in "optim"). On the other hand, we 

set the population size (popsz) and generation time (gener) 

depending on the dimension of decision variables D as 

Eqs.(1) and (2), respectively. In terms of the known optimal 

value fopt, we evaluated the success numbers by Eq, (3).  

popsz = min( 10D, 60)       (1) 

gener = min(100*popsz
0.7

, 2000)      (2) 

Success#：if ( |fopt - f(x)| < eps*(1.0 + |fopt||) ), 

 then Success# = +1, where eps=1.0E-2     (3) 

Every problem was solved 31 times and we show only 

a part of these results in Tables 1 and 2 due to the space 

limitation. Under the present conditions, only DE could get 

full mark all over the problems, and only two problems (De 

Jong & Martin/ Gaddy ) are solved correctly by all methods. 

To evaluate the performance among the methods quickly, 

we ranked the method according to the Success# as shown 

in Table 3. 

 
Table 1 Comparison among the methods for 4-D 

Rosenbrock (D=4, popsz=40, gener=1322, fopt=0) 

Item Min Median  Mean  Max  Suc# 

DE 0.0 0.0 0.0 0.0 31 

PSO 1.08E-4 7.81E-4 9.02E-4 2.24E-3 31 

GA 9.90E-3 6.02E-1 5.78E-1 1.2438 1 

N-M 3.04E-7 1.48E-5 7.17E-1 3.7074 25 

SA 6.86E-3 2.95E-2 2.99E-2 8.07E-2 2 

NSGA2 3.70E-3 6.59E-1 1.00236 3.8230 2 

 
Table 2 Comparison among the methods for Griewangk 
(D=10, popsz=60, gener=1756, fopt=0) 

Item Min Median  Mean  Max  Suc# 

DE 0.0 0.0 0.0 0.0 31 

PSO 0.0 0.0 9.58E-4 7.40E-3 31 

GA 1.02E-6 7.40E-3 4.54E-3 7.40E-3 31 

N-M 2.93E-3 3.37E-2 7.44E-2 3.67E-1 3 

SA 6.59E-1 8.88E-1 8.74E-2 9.90E-1 0 

NSGA2 1.00E-4 7.54E-3 1.08E-2 4.37E-2 26 

 

Despite the poor performance of SA as of meta-

heuristic algorithm, conventional N-M has a favorable 

feature if we notice its simple algorithm. Though the 

proposed NSGA-II is inferior to DE and PSO, it 

outperforms the rests including the relative method like GA.  



 

 

Moreover, four poor results regarding NSGA-II are 

analyzed more in detail.  We showed their histogram 

based on the objective value in Fig. 2. From all of those 

results, the solution ability of the proposed approach is 

known to be satisfactory except for 4d-Rosenbrock and 

Griewangk problems. 

Finally, we can conclude the total performance ranks 

at the third place following DE and PSO a bit behind. From 

these, we can claim the proposed NSGA-II is comparable 

to the conventional evolutionary methods and sufficient 

even as a global optimization method for SOP. 

 

3.2 Post-optimal Evolution to Enhance Prior Solution 

of Scalarlized MOP 

 

Though the weighting and -constraint methods 

belong to classical method, they are often used due to the 

effectiveness regardless of their simplicity as mentioned 

already. Here, through the proposed NSGA-II, we solved 

the bi-objective FES1 benchmark (Huband et al., 2006, 

Appendix) formulated as SOP, i.e., (p.2) or (p.3). We 

showed those results in the “Before” column in Table 4. 

As popularly known, shortcomings of those classical 

methods refers to the stiff setting of preference parameters 

like weighting and constraint values. Generally speaking, 

it is almost impossible to pre-determine those values 

appropriately. Hence, it makes sense to re-evaluate the 

result after such plain optimization. For example, taking 

three cases shown “Method” and “Preference parameter” in 

Table 4, i.e., case 2 =0.1 weighs f2 more than f1 and case 

2 =0.7 oppositely more f1 while case “Weighting” 

balances both, we carried out this post-optimal evolution 

following the procedure mentioned in Sec.2.3.  

Using the elite-induced NSGA-II under the conditions 

popsz=6, gener=200 and single elite (original optimal 

solution) shown in “Before” column, we obtain the result 

for each case as shown in “After” column. Among them, we 

used bold face to show the best solution while underline 

infeasible ones. By virtue of the post-optimal evolution, let 

us note some solutions shown by red letters outperform the 

original solution. 

Table 3  Summary of ranking of each method (Number in brackets denotes the Success# defined by Eq.(3)) 

Problem 1st 2nd 3rd 4th 5th last 

Shekel's fox hole  DE, NSGA2, GA [31]   PSO [29] N-M [2] SA [1] 

Schwefel DE [31] PSO[27] NSGA2[22] GA [9] SA [3] N-M [2] 

De Jong  All solved successfully 

Goldstein/Price DE, PSO, GA [31]   NSGA2[30] SA [28] N-M [16] 

Branin  DE,PSO,GA,N-M,SA [31]     NSGA2[30] 

Martin/ Gaddy All solved successfully 

Rosenbrock  DE, PSO, SA, N-M [31]    NSGA2[23] GA [16] 

4-D Rosenbrock  DE, PSO [31]  N-M [25] NSGA2 [2] SA [2] GA [1] 

Hyper sphere  DE,PSO,NSGA2,GA,N-M[31]     SA [1] 

Griewangk DE, PSO, GA [31]   NSGA2[26] N-M [3] SA [0] 

Fig.2 Histogram of success number for lower rank results regarding NSGA-II (Range means objective value). 



 

 

Among those, we might find out more favorable 

solution by elaborately inspecting those solutions again. In 

fact, since the pre-determined constraint values are not 

strictly definite, it is meaningful to work on this re-

evaluation over the underlined infeasible solutions. For 

example, as seen in the case of 2 =0.1, an infeasible 

(2.5548, 0.1086) might be more preferable to the best 

(2.7178, 0.0875) or the elite (2.6366, 0.1) since allowing a 

slight violation of constraint on f2 (<0.1) can give a big 

return on f1. 

In a summary, in Fig.3, we describe the results of the 

original optimizations (w12, e<0.1 & e<0.7) and the post-

optimal evolutions (post-w12, post<0.1 & post<0.7).  (In 

reference, we add the Pareto front derived by ordinal 

NSGA-II under the conditions popsz=20, gener=100). We  

Fig.3 Post-optimal evolution for three optimal solutions 

obtained by classical methods. 

know every post-optimal evolution can build correctly its 

corresponding segment of the Pareto front. Through 

inspecting the front around there, we might improve the 

quality of multi-objective optimization and have a chance 

to update the prior decision rationally. Eventually, we can 

relax the shortcomings of the classical methods and make 

them more flexible and adaptive approach. 

 

4. CONCLUSION 
 

To make a rational decision in various fields, we have 

successfully resolved some difficult problems not only 

through SOP but also MOP. Especially, MOEAs are being 

interested in these decades. Though they are useful 

techniques for multi-objective analysis, in this paper, we 

have proposed a simple procedure for solving SOP by 

MOEA to enhance its usefulness. Moreover, the idea has 

been applied to the classic multi-objective optimization 

under the weighing and -constraint approaches and 

deployed as a post-optimal evolution that aims at repairing 

shortcomings inherent to those methods. Actually, it is 

developed in a co-operation with our elite-induced multi-

objective evolutionary algorithms. After all, the proposed 

idea can make an analysis method like MOEA be available 

for an effective and practical solution method of SOP and 

certain MOPs as well.  

To examine the effectiveness of the proposed idea, a 

set of benchmark problems have been solved by the 

proposed NSGA-II and compared with other methods. 

Then, through the post-optimal evolution for the classical 

MOPs, we have shown its significance in practical 

decision-making. In future studies, it is interesting to 

compare the performance among the other MOEAs like 

MODE, MOPSO, etc. 

 

Table 4 Result of FES1 benchmark by the proposed procedure mentioned in Sec. 2.1 

Method 
Preference 

parameter 

Before (original) After (post-optimal) 

(f1, f2) : elite V
*
 (f1, f2) V

*
 

Weighting w = (0.2, 0.8)
T
 

(1.8510, 0.2077) 0.5363 (1.4875, 0.2089) 

(1.2923, 0.2749) 

(1.7935, 0.1795) 

(2.3434, 0.1357) 

(2.3603, 0.1347) 

0.4646 

0.4784 

0.5023 

0.5772 

0.5798 

-constraint 

2 =0.1 

(weigh on f2) 

 

 

 

(2.6366, 0.1) 

 

 

 

2.6366 

(2.2045, 0.1406) 

(2.4921, 0.1168)  

(2.5548, 0.1086)  

(2.7178, 0.0875) 

(2.9363, 0.0738) 

(3.0837, 0.0588) 

2.2045 

2.4921 

2.5548 

2.7178 

2.9363 

3.0837 

2 =0.7 

(weigh on f1) 

 

 

(1.0531, 0.7) 

 

 

1.0531 

(0.5971, 0.7773) 

(0.7454, 0.7163) 

(0.8292, 0.5473) 

(0.9483, 0.4234) 

(1.1198, 0.3913) 

0.5971 

0.7454 

0.8292 

0.9483 

1.1198 
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Appendix. Benchmark Problems  
 

1. Shekel's fox hole: fopt =0.998004 at (-32.0, -32.0) 
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3. De Jong: fopt =3905.93 at (1, 1) 
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5. Branin: fopt =0.3977272 at (-22/7, 12.275), (22/7, 2.275) 

or (66/7, 2.475)  
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6. Martin & Gaddy: fopt =0 at (5, 5)  
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7. Rosenbrock : fopt =0 at (1, 1) 
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8. 4-D Rosenbrock: fopt =0 at (1, 1, 1, 1) 
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9. Hyper sphere: fopt =0 at (0, 0, 0, 0, 0, 0)  
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10. Griewangk: fopt =0 at (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)  
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